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h” (t) =I: 

The optimal control is determined from the maximum principle (2.14) 

up (t) = -1, o<tg 16 

u” (t) = 1, V’iT<t<21/T 

The optimal trajectory touches the constraints for tr = v” 1 2, & = 2 t/z- 6q z- 

The authors are deeply grateful to A. B. Kurzhanskii and M. I. Gusev for useful discus- 

sions of the paper. 
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We derive sufficient conditions for the Z-evasion of contact in a linear differ- 
ential game. The paper adjoins the investigations in fl - 51. 

1. We consider the problem of evasion of contact [ 1, 21 in a linear differential game 
[33 given by the equation 

i = cz + f (u, ?J), u E p, VEQ (1.1) 

Here z is a vector in the n-dimensional Euclidean space R", c is a constant nth- 
order square matrix, u is the pursuit parameter, 27 is the escape parameter, P and Q 
are given compact subsets from Rn, f (u, v) is a function continuous in all its varia- 

bles on P x Q . The terminal set M of game (1.1) is assumed to be a linearsubspace 
of space R”. 
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We say that an evasion of contact is possible (or an escape is possible) in game (1.1) 
if for any initial value zO E R” \ hf of the vector z and for an arbitrary measura- 
ble variation of the control parameter n = zz (t) we can select a measurable variation 
of the control parameter u -- v (t) such that the point z (t), being a solution of the 
vector differential equation 

2 = cs + f (u (t), V (Q), z0 = z (0) (1.2) 

does not hit onto set h!f for any value whatsoever of time t E: (0, f CQ). Here, to 
determine the value of parameter II (t) at each instant t we are allowed to use only 

the values of u (s) and z (s) for s Q t and we are not allowed to use these values 

for s > t (see Cl]). 
We say that an l-evasion of contact (or an 1 -escape) is possible in game (1.1) if 

there exist a pair of numbers 0 > 0 and 1> 0, depending only on the game, such 
that the control v = 21 (t) can be constructed on the basis of the information indicated 

so that the following estimate holds for point z (1) : 

g (t) = I x2 (0 I > 0, o<t,<e 0.3) 

E 0) = I z 2 (0 I > L o\<t< 4-m 

where n is the operator of orthogonal projection from Rn onto a subspace L which 
is the orthogonal complement of M in R”. 

2. By @ (t) we denote the matrix clc and by S the unit ball in L. We assume 

that the following condition has been satisfied for game (1.1). 

Condition 1. There exists 6 > 0 such that for any r E (0, 261 and for any 
II E P the set MD (r)f (tit Q) = 2l.J (u, ?Q 

is convex, while the set 
w (r) = ,“pw (k r) 

has a null vector as an interior point, i. e, there exists y (r) > 0 such that 

Y (r)S c w (r), 0 < r -< 2s (2.1) 

(See 13, 43 for the definition of operations over convex sets). 
In what follows, by y (r) we shall mean the largest of the numbers satisfying (2. I), 

Assertion 1. The function y (r) is continuous and bounded on the interval 

(0, 261. 
Proof. The continuity of a convexly multiple function IO (r), r > 0 was proved 

in 231. Therefore, for any ro E (0,2 S] and for any e > 0 there exists n > U such that 
the inclusions 

w (r) C 20 (rO) -I- ES, w (r0) C w (4 t- ES (2.2) 

are fulfilled for any r E (r0 - q, r. + q) (1 (0,~ 61 . Together with (2.1) the second 
one of these inclusions yields the inclusion 

y (ro) s c ZJI (r) + es 

Hence (see Assertion 2 in [4]) y (~o)S’V(ES C w (r) and. consequently, for any 8 < ‘r (r0) 

we have (y (ro) - e) S C w (r) which in accordance with the definition ofT(r)yie 

Y o*) >, Y 6.0) - F, (2.3) 

If, however, a > Y (ro)r then by virtue of Condition 1 inequality (2.3) is obvious. 
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Together with (2.1) the first one of inclusions (2.2) yields the inclusion 

Y (r) s c w (ro) + ES (2.4) 

Further, from (2.3) it follows that if s < Vzy (ro), then y (r) > li,y fro) > E, so that from 
(2.4) we obtain (y (r) - E) S C w (r-0) and, consequently, y (r) % y (ro) + e for any r E 

(1.0 - q, ro + q) n (0.2 61. The boundedness of Y (r) follows from the baundedness of 
w (u, r) for any u f II (the compactness of V). 

3, By K we denote the unit sphere in L (the boundary of ball S). We assume that 
the following conditions have been satisfied for game (1.1). 

Condition 2. For any 4 E K there exists a vector u ($) E Q such that 

(3.1) 

for any r E LO, 261 and for any u e P, u E. Q. 
Condition 3. For any ZE Rn there exists a linear subspace L (z> of space L 

such that 
rta, (t)z E L (z), O<t<26 

We note that since 7 (r) SC w (u, r), it follows instantly from Condition 2 that for 

any r E IO, 2 &] "and TV E Iz 

y (r) < ($.@ (r)f (u, v (Icl))) (3.2) 

Let z E R" and let Q (z) E K be an arbitrary vector orthogonal to L (z) (it 
exists by virtue of Condition 3). We fix 9 (z) and we set u (z) = 2, (9 (2)). Substitut- 

ing in (3.2) the vector v (z) in the place of v (9) and an arbitrary control u (t - r) 

in the place of u , we obtain by integrating with respect to r from zero to t (see As- 
sertion 1) t 

j~iz).Sn~(~)f(U(t---r), D(z))dl)~iT(~)dT=P(t). bE[O, 261 (3.3) 
0 0 

4. In [ 1, 21 it was proved that Condition 1 is sufficient (when f (u, v) = 2’ - u) 
for an escape to be possible in game (1.1). The folIowing theorem answers the question 
on the possibility of an Z-escape. 

Theorem. Let Conditions 1 - 3 be fulfilled for game (1.1). Then an Z-escape is 
possible in this game’, and 0 EZ G,,while 

a (s) = max(0; p (s + 6) - p (s) - Ns} (4.2) 

N = max 1 nCD (r)f (a, 27) 1 , r Ez lo, 61, Et Ez P, CEQ 

Proof. First of all we note that l.k (s) and a: (s) are continuous functions of para- 
meter s,.so that the inequalities p (s) > 0 for s > 0 and a (0) = p (6) > 0 
guarantee that ,? is positive. Now let z. = z (0) be an arbitrary vector of I-17, For 
an escape starting from point z. we propose to construct inductively the control v = 
v(t) on each of the intervals [&, (n + l)S), n = 0, 1, . . . , by the rule 

t’ (s) G v, z ZI (z,), s EE M, (n +- 1)6) (4.3) 

where z, = z (n6) is the value of vector z- (t) at the instant ncj . Then, according to 

Cauchy formula, for any t E [n6, (n -j- 1)6] 
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f--)26 

JIZ (t) = no (t - ns) Zn + 5 MD (r) f (u (t - r), u,) dr (4.4) 
e 

where u (s), 0 < s < t is the pursuer’s control constructed by the instant t . 
By IT, we denote the orthogonal projection operator from fi” onto L (z,) and by 

I’, the orthogonal projection operator onto 9, = $ (2,). By noting that r,z nz ($n- 
z)$, for any cz E L, from (4.4) we obtain, by virtue of (3.3), the inequality 

KlW)f>W--8) (4.5) 
Since for n > 1 

n,nz (1) = xdi, (t - ns){~(B)z,_r+ i @(s)f(u(126--), v*,-1) ds -k 
0 

in accordance with the definition of II, (z) we have 

where 

For the first term in (4.6), as also in (3.3), we have the bound (see (3.2)) 

(4.6) 

The estimate 

is obvious for the second term in (4.6). From (4. ?), (4.8) it follows that (see (4.2)) 

I rb= 0) I > I r,,-,rk w I > u (t - n6) 

Hence, finally, for any t E [n6, (n + 1)6), n > 1. 

E”(t) = \ nz (t) I2 = I rI,nz (t) I2 _t I f,rtZ (t) I2 > $ (t - n6) + 
cxa (t - nS) > 22 

For rt = 0 , from (4.5) we have 

6, Let us consider the escape game “the boy and the crocodile” [l] 

2.1 = 2s + u, z‘s z.z - tl,, In I<., ivl<f (5.1) 

Here z’, Z’, ~1, 1’ are v-dimensional vectors of the Euclidean space RV, u and V 
are the control parameters. The terminal set .&!f consists of those and only those points 
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2 = (21, Z”) for which z1 = 0. 1x1 this connection L = {Z : Z’ = 0) and rtz = z1 
(the second coordinate, equalling zero, is omitted). We assume that Y > ,3. 

In this problem we can obtain a bound for the quantity I somewhat better than the 

bound (4.1) given by the Theorem in Sect. 4. Namely, in spite of the fact that Condi- 
tion 1 is not satisfied on the interval [O, 21, for an escape starting from the point zO = 

(zd, 2,“) we propose to construct inductively the control 2: =;r ZI (t) on each of the inter- 

vals 1, = [n, n + I>, n = 0,1,2, . . . , by the rule 2’ (S) ZG u,~, S E I,, where 
% is the unit vector from f? orthogonal to the vectors z”(n) and z2(n) (here z*(n) 

and z”(n) are the values of vectors z1 (t) and z2(t) at the instant n ). Then, by vir- 

tue of the Cauchy’s formula 

at~(t)~:~(t)=z~(n)+(t-n)~*(~)+(~-~)~*- (5.2) 
1-n 

s 
ru(t-r)dr, tEI, 

0 
where u (S), 0 < s < t is the pursuer’s control constructed by the instant t . 

Denotingas before by n, the orthogonal projection operator from L onto the sub- 
space spanned by the vectors z’(n) and z’(n), and by r, the orthogonal projection 
operator onto u, , we have t-n 

Irnz’(t)l>(t- n) - 5 rdr = p(t- n), tE1, 

p(s) = s - ‘l2s2, o&z 
Since for n > 1 

II,.zl (t) = z1 (n - 1) + (1 + t - n) 22 (n - 1) + z&1- 
f-4 1 

s 
rrI,u(t--r)dr-- ru(n- 

s 
r)dr-_(t-n)u(n-r)dr 

we have 
0 0 

I ii1 (0 I > 1 r,l-lrr,zl (t) I> 1 - I!2 (t - n)” - Ii2 - (t - n) 

From inequalities (5.3) and (5.4) we have 

12”(t) 12>~z(t-n)+a2(t-n), tEIn, n>i 

a (s) = max (0; 'I, - s - 'i, S'), 0 < S < 1 

(5.3) 

(5.4) 

Computing the minimum of the function p2(s) -/- a”(s) on the interval [O, 13, for the 
evasion magnitude we obtain the value 1, = 0.2978. 

Now, let the initial point .z@ = (&,I, Za2) be such that 

j 201 + tzo2 J” > (20 i_ l!2 t2)* - t2, o,<t,ct,, to-1 - f~--hl 

where t,, is the smallest positive root of the equation 2, = t - ‘/,t2. Then the indi- 
cated behavior of the escaper guarantees k0 -evasion of contact. starting from the instant 
t = 0. In fact, by virtue of (5.2) 

~~z(t)l~(JB01+tZD2J2ft2)‘~*-~/2t2~10, o<t<tu 

For 8 E it,, 11 the required estimate follows from (5.3). 
The authorthanksE. F. Mishchenko for formulation of the problem and for attention to 

the work. 
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We construct the canonic averaging scheme for solving certain optimal control 

problems on the basis of Pontriagin maximum principle. We assume that the 
plant is described by a system with rotating phase [1] , while the control enters 
only into the perturbing terms [2]. The analysis is carried out on a large time 
interval so that the controlled quantities vary significantly. The procedure de- 
veloped is illustrated by concrete examples of quasi-linear oscillatory systems. 
The small parameter method for the approximate solution of optimal control 

problems was employed in [ 2 - 51. 

1. Statement of the problem, We formulate the problem of controlling a 
certain mechanical plant by small control actions. Let the corresponding system of 

equations have the form 

.c’ = &X CT, 3.7 y, u, E), z = E (t - to) + 70, 2 (to) = zo (1.1) 

i/’ = Yo(~, z, Y) + EY(% 2, !.j, U, E), Y (to) = Y, 

Here IC, X are n-dimensional vectors ; y, Y,, Y are In-dimensional vectors; u is 
the &dimensional control, T is “slow time”, e is a small scalar parameter, e E 10, 
aO]. We assume that the right-hand sides of system (1.1) have been defined in some, 
possibly unbounded, region of variation of their arguments and in it satisfy all the neces- 
sary smoothness and periodicity conditions which follow from the subsequent construc- 

tions. The control’s performance criterion will be introduced somewhat later, after the 
derivation of a standard system with rotating phase. 

From (1.1) it follows that when E = 0 the system becomes uncontrollable 


